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The Holocene is probably the most intensively studied

series/epoch within the geological record, and embodies

a wide array of geomorphological, climatic, biotic and

archaeological evidence; yet little attention has hitherto

been paid to a formal subdivision of this series/epoch. Here

we report a tripartite division of the Holocene into the

Greenlandian, Northgrippian and Meghalayan stages/ages

and their corresponding Lower/Early, Middle, Upper/Late

subseries/subepochs, each supported by a Global Bound-

ary Stratotype Section and Point (GSSP). The GSSP for the

lowermost stage, the Greenlandian, is that of the Holocene

as previously defined in the NGRIP2 Greenland ice core,

and dated at 11,700 yr b2k (before 2000 CE). The GSSP for

the Northgrippian is in the NGRIP1 Greenland ice core, and

dated at 8236 yr b2k, whereas that for the Meghalayan is

located in a speleothem from Mawmluh Cave, Meghalaya,

northeast India with a date of 4250 yr b2k. The proposal

on which this subdivision is based was submitted by the

Subcommission on Quaternary Stratigraphy, approved by

the International Commission on Stratigraphy, and formally

ratified by the Executive Committee of the International

Union of Geological Sciences on 14th June 2018.

Introduction

The Holocene is the uppermost chronostratigraphic unit within the
geological record and covers the time interval from 11.7 ka until the
present day. The term ‘holocènes’, which means ‘entirely recent’, was
first used by Paul Gervais (1867–69, p. 32) to refer to the warm epi-
sode that began with the end of the last glacial period, and which had
previously been referred to as ‘Recent’ (Lyell, 1839) or ‘Post-Glacial’
(Forbes, 1846). It entered the international lexicon as ‘holocènes’ during
the Second International Geological Congress (IGC) held in Bologna
in 1882, and a ‘Holocenian’ Stage was proposed by the Portuguese
Committee for the Third IGC in Berlin in 1885. The Holocene is now
officially defined as a series/epoch within the Quaternary System/Period
(Walker et al., 2008, 2009; Gibbard and Head, 2010; Gibbard et al.,
2010; Head and Gibbard, 2015).

Holocene stratigraphic records provide evidence, inter alia, of cli-
mate and sea-level change, geomorphological and hydrological pro-
cesses, vegetational developments, and faunal migrations. In addition, they
contain a unique range and wealth of archaeological data that attest to
the development of society and the evolving relationships between
people and the environment under near modern boundary conditions.
Holocene successions are often extremely well-preserved, continu-
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ous and amenable to examination at high temporal resolution. It is
surprising, therefore, that relatively little attention has been paid, hith-
erto, to the formal subdivision of the Holocene, and particularly in
view of recent initiatives in Quaternary stratigraphic subdivision and
nomenclature (Cita et al., 2006, 2008, 2012; Head et al., 2008; Walker
et al., 2008, 2009; Gibbard and Head, 2009, 2010; Gibbard et al., 2010;
Head and Gibbard, 2015).

In 2010, a Working Group of the Subcommission on Quaternary
Stratigraphy (SQS) and members of the INTIMATE (Integration of
Ice Core, Marine and Terrestrial Records) Research Group was con-
vened at the suggestion of Philip Gibbard, then chair of SQS, to con-
sider this matter. Initial deliberations of the Group were set out in a
position paper (Walker et al., 2012) and, in due course, a proposal was
submitted to the International Commission on Stratigraphy (ICS) via
the SQS. This outlined a formal subdivision of the Holocene into
three stages/ages and their corresponding subseries/subepochs, each
supported by a Global Boundary Stratotype Section and Point
(GSSP). The proposal was approved by the ICS and subsequently rat-
ified unanimously by the Executive Committee of the International
Union of Geological Sciences (IUGS) on 14th June 2018. Here we
explain briefly the background to the proposal and present details on
the new Holocene stages/ages and subseries/subepochs, and their
associated GSSPs. 

Background and Context

A formal subdivision of the Holocene was first outlined by Man-
gerud et al. (1974) who proposed that for Northern Europe, the Flan-
drian (regional) Stage (equivalent to the Holocene Series) should be
divided into three substages with boundaries defined by radiocarbon-
dated chronozones based on palynologically-defined biozones: Early
Flandrian (Preboreal and Boreal: 10,000–8000 14C yr BP1); Middle
Flandrian (Atlantic and Subboreal: 8000–2500 14C yr BP); and Late
Flandrian (Sub-Atlantic: post 2500 14C yr BP). But time-transgression
in vegetational response to climate change suggests that such a chro-
nostratigraphic subdivision of the Holocene based on biological evi-
dence is not applicable at anything other than the local or perhaps regional
scale (Björck et al., 1998; Wanner et al., 2008). Nevertheless, the con-
cept of a tripartite subdivision of the Holocene clearly has validity, with
the terms ‘Early’, ‘Middle’ (‘Mid-’) and ‘Late’ Holocene being routinely
applied in the Quaternary science literature. Yet, despite their common
usage the precise temporal limits of each of these subdivisions has
never been formally agreed.

One reason for this is that unlike earlier time intervals in the Quater-
nary, the Holocene contains few long-term climatic or environmental
trends that register globally and that provide a basis for subdividing
into distinct climatostratigraphic units. Hence any subdivision is best
achieved through formalizing the subdivisions that are already being
used (‘Early’, ‘Middle’ and ‘Late Holocene’) by underpinning them,
where possible, with clearly defined marker horizons. These should
ideally be globally applicable and should differentiate the Holocene
Series/Epoch into three stages/ages and their corresponding subseries/

subepochs, based on distinct age boundaries defined by formally rati-
fied GSSPs (Walker et al., 2012).

The Case for Subseries/Subepochs in the Holocene

Holocene stratigraphers use geochronology universally. Annual/
seasonal layering in ice cores, speleothems, and lacustrine and anoxic
marine records, along with growth bands in shells, corals and wood,
all provide ages by direct counting from the present (Head et al.,
2017). The base of the Holocene itself is dated in exactly this way
(Walker et al., 2009). In addition, a wide range of geochronometric
methods is used routinely in the dating of Holocene sedimentary suc-
cessions, including radiocarbon, uranium series, lead-210 and ther-
moluminescence dating, all of which give age estimates in years
before present (or a proxy for the present). These methods of dating
are more precise and reliable than traditional means of stratigraphic
correlation. Consequently, Holocene records typically show data rela-
tive to a timescale in years, not core or sediment depth. Accordingly,
it is natural to use the terms ‘Early’, ‘Middle’ and ‘Late’ for Holo-
cene records (Head et al., 2017). Although subseries/subepochs have
always been acceptable under the International Stratigraphic Guide
(Hedberg, 1976: table 2; Salvador 1994; table 3), in practice this rank
has not been sanctioned by the IUGS. But the terminology is perva-
sive in the literature of the Quaternary, and especially of the Holo-
cene, and hence it is entirely appropriate that while the new
subdivisions described here are formally designated as stages and
ages, they are formally accompanied by their corresponding sub-
series and subepochs.

The Ratified GSSPs

We report two new GSSPs, one in an ice core and one in a cave
deposit (a speleothem). While both of these might be seen as uncon-
ventional media for GSSPs, there are good reasons why they have
been chosen. The precedent for using an ice core as a GSSP was set
with the formal ratification of the Pleistocene–Holocene boundary
in the Greenland NorthGRIP2 (NGRIP2) ice core (Walker et al.,
2008, 2009), and so the designation here of a GSSP based on stable
isotope records in an ice core follows previously established prac-
tice. The use of a speleothem, on the other hand, is new. It is justi-
fied by the fact that speleothems (a) are stratified successions that
occur in most terrestrial regions on Earth; (b) can be analysed at
unusually high levels of stratigraphic resolution (sub-decadal to
annual); and (c) contain a stable isotopic record that can be under-
pinned by a high-precision chronology based on U-Th dating. The
stable isotope profile in Holocene speleothem calcite has been
shown to be an extremely sensitive proxy for climate (e.g., Cheng et
al., 2009; Wu et al., 2012; Cheng et al., 2015), and thus dated shifts
in the isotopic signal provide a highly detailed and chronologically
precise record of Holocene climate change. As such, speleothems
are unique yet widespread geological archives and, especially in the
Holocene, constitute highly detailed stratigraphic successions and
hence potential contexts for GSSPs. 

1Note that ‘BP’ here, as well as below, means ‘before 1950’, whereas ice-
core age estimates are reported using the designation ‘b2k’, i.e., relative
to 2000 CE.
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The Greenlandian Stage/Age; Lower/Early Holocene Sub-

series/Subepoch

The Greenlandian Stage/Age is named with reference to the central
Greenland ice sheet, where the North Greenland Ice Core project
(NGRIP: Fig. 1) core was drilled to bedrock in 2003 (75.10°N; 42.32°W).
The GSSP defining the base of the stage/age and corresponding sub-
series/subepoch is located at 1492.45 m in the NGRIP2 ice core, and
was ratified as the base of the Holocene Series/Epoch in 2008. It has
an estimated age of 11,700 yr b2k (before 2000 CE; Walker et al., 2008,
2009). This GSSP now also defines the base of the Greenlandian Stage/
Age, and the base of the Lower/Early Subseries/Subepoch, as the low-
est stage and subseries of the Holocene. The primary marker for this
GSSP in the NGRIP2 ice core is an abrupt shift to lower deuterium
excess values, reflecting reorganisation of the evaporation regime at
the precipitation source at the end of the Greenland Stadial 1/Younger
Dryas Stadial. Together with changes in dust load and other parameters,
the GSSP marks the first signs of a fundamental change in the climate

and circulation patterns of Greenland and its surrounding areas (Stef-
fensen et al., 2008). The NGRIP2 ice core is curated at the University
of Copenhagen (Walker et al., 2008, 2009). The upper boundary of
the Greenlandian Stage/Age and the Lower/Early Holocene Sub-
series/Subepoch is defined by the GSSP of the superjacent Northgrip-
pian Stage/Age.

The Northgrippian Stage/Age; Middle Holocene Subseries/

Subepoch

The Northgrippian Stage/Age (corresponding to the Middle Holo-
cene Subseries/Subepoch) is named with reference to the NGRIP1 ice
core from central Greenland (75.10°N; 42.32°W) which is the type
section for the GSSP. It is defined in the ice core at a depth of 1228.67
m at an interval that shows a clear signal of climatic cooling follow-
ing a period of generally rising temperatures during the Early Holo-
cene (Fig. 2). This cooling occurs around 8.2 ka in the NGRIP1 core
and corresponds with the ‘8.2 ka climatic event’, a short-lived, near
global episode that is reflected in a wide range of proxy climate
records (see below). It is generally considered to reflect curtailment of
North Atlantic Deep Water (NADW) formation and its associated
northward heat transport, due to catastrophic meltwater release from
glacial lakes Agassiz and Ojibway into the North Atlantic during
wastage of the Laurentide Ice Sheet (Alley and Ágústdóttir, 2005;
Kleiven et al., 2008; Hoffman et al., 2012), perhaps accompanied by
collapse and accelerated melting of ice domes over Hudson Bay
(Matero et al., 2017). The stratigraphic signature of the 8.2 ka event
therefore serves as the primary correlation event for the GSSP of the
Northgrippian Stage/Age and Middle Holocene Subseries/Subepoch
in the Greenland NGRIP1 ice core.

In the Greenland NGRIP1 ice core, the 8.2 ka event is marked by a
significant shift in the oxygen isotope record to more negative δ18O
and δD values, reflecting abrupt cooling (Fig. 2), and by a decline in ice-
core annual layer thickness (Rasmussen et al., 2007) and deuterium
excess (Masson-Delmotte et al., 2005). The water isotope diffusion-
derived temperature record indicates a cooling of ~5 °C (Gkinis et al.,
2014). Within the δ18O minimum that constrains this event, there is also
a strong volcanic signal marked by a double acidity peak reflected in
electrical conductivity measurements (ECM). This layer, at 1228.67
m depth in the NGRIP1 core (Fig. 3), is characterized by high fluo-
ride content and can most likely be attributed to an Icelandic volcano.
While it has not been linked to a specific eruption, the layer is found
in all deep Greenland ice cores (Rasmussen et al., 2006; Vinther et al.,
2006; see below). Moreover, while the climate signal inferred from
the oxygen isotope record allows the GSSP to be placed within the
coldest part of the 8.2 ka event in the NGRIP1 core, examination of
other proxy climate records shows that the 8.2 ka event is part of a
longer term episode of climate cooling (Rohling and Pälike, 2005; see
below), and hence the use of the independent volcanic signal enables
the GSSP to be located with a high degree of precision in the NGRIP1
ice core record.

The 8.2 ka event is most strongly registered in localities around the
North Atlantic Ocean (e.g., Snowball et al., 2010; Cohen and Hijma,
2014; Holmes et al., 2016), and therefore the Greenland NGRIP1 ice
core is an appropriate high-latitude stratotype (GSSP). However, proxy
climate records from other parts of the world also show anomalies

Figure 1. Location of the NorthGRIP coring site on the Greenland

ice sheet, which serves as the type locality for the Greenlandian and

Northgrippian stages/ages and their corresponding Lower/Early

and Middle Holocene subseries/subepochs. Also shown are other

deep drill sites, including GRIP and DYE-3 cores used in the con-

struction of the GICC05 time scale upon which the chronology of

the NGRIP1 and NGRIP2 records are based.
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around 8.2 ka, including those from speleothems in southern Asia, China,
Brazil and California (Cheng et al., 2009; Wu et al., 2012; Oster et al.,
2017); lake sequences in the Levant (Vossel et al., 2018), tropical
Africa (Gasse, 2000), northern India (Dixit et al., 2014) and the
Tibetan Plateau (Zhang and Mischke, 2009); pollen records from the
Mediterranean (Pross et al., 2009; Peyron et al., 2011); ice cores from
eastern Africa (Thompson et al., 2002); pollen data from Siberia (Velichko
et al., 1997); tidal flat sediments from China (Chen et al., 2015); and
marine records from the north-west Pacific (Hua et al., 2008). The 8.2 ka
event may also be recorded in lake sediment successions in East Ant-
arctica (Cremer et al., 2007) and New Zealand (Augustinus et al., 2008).
The 8.2 ka event is therefore near global in nature (Rohling and Pälike,
2005) and, as such, constitutes an ideal time-stratigraphic marker
horizon for defining the base of the Northgrippian Stage/Age and the
Lower/Early Holocene Subseries/Subepoch.

The age of the GSSP is derived from annual ice layer counting (the
GICC05 timescale) using a range of physical and chemical parame-
ters many of which vary seasonally, thereby enabling annual ice layers
to be determined with a high degree of precision. These include dust
concentration, conductivity of ice and melted samples, δ18O and δD,
and a range of chemical species including Ca2+, NH4+, NO3–, Na+ and
SO4

2– (Rasmussen et al., 2006; Vinther et al., 2006). In the upper levels of
Greenland ice cores, annual ice layers can be readily identified on the
basis of δ18O and δD records and seasonal variations in ice chemistry
(Meese et al., 1997; Vinther et al., 2006). However, because of the rela-
tively low accumulation rate at the drill site and a high sensitivity of
the annual cycles in δ18O and δD to diffusion, NGRIP1 δ18O and δD
data are not suitable for the identification of annual ice layers. In order
to obtain a complete Holocene chronology for NGRIP1, therefore, the
Early Holocene record was linked with that from other Greenland

core sites, DYE-3 and GRIP (Fig. 1). The former is located in south-
eastern Greenland where a higher ice accumulation rate has produced
the best resolved of all the Greenland ice-core timescales for the Mid-
dle and Late Holocene (Vinther et al., 2006). A key feature in all of the ice
cores is the 8.2 ka event which, as in NGRIP1, is marked by a reduction
in δD, by a prominent ECM double peak and by a marked increase in
fluoride content reflecting a volcanic event (see above). Collectively,
these features constitute a unique time-parallel marker horizon for
correlating all Greenland ice-core records.

In the DYE-3 core, the annual layer situated in the middle of the
ECM double peak is dated to 8236 yr b2k with a maximum counting
error of 47 yr (Vinther et al., 2006)2. Note that the term b2k, which refers
to the ice-core zero age of 2000 CE, is 50 years later than the zero year
for radiocarbon which is 1950 CE; hence the equivalent age on the
calibrated radiocarbon timescale is 8186 cal. yr BP. Accordingly, the
GSSP for the Northgrippian Stage/Age and Middle Holocene Subseries/
Subepoch is defined at a depth of 1228.67 m in the Greenland NGRIP1
ice core with an age of 8236 yr b2k. 

In order to examine the stratotype horizons for the Greenlandian
and Northgrippian stages/ages, deep ice-coring is necessary. However,
the NGRIP1 and NGRIP2 cores are archived at the Centre for Ice and
Climate, The Niels Bohr Institute, University of Copenhagen, Denmark,
and access to these can be gained through the NGRIP curator (currently

Figure 2. Water stable isotope ratios (δ 18O) at 20-year resolution in three Greenland ice core records, DYE-3, GRIP and NGRIP (NGRIP1

and NGRIP2 combined), over the time interval 11.7–5.3 ka b2k (before 2000 CE) on the GICC05 time scale (Rasmussen et al., 2006; Vinther

et al., 2006). The location of the Early–Middle Holocene boundary inside the 8.2 ka event is shown by the dashed black line. Note that the

δ
18O records are aligned using the volcanic matching of the records. Differences in expression of the 8.2 ka event in the stable isotope records

represent real differences in the isotope signal, and not dating or matching uncertainty.

2The uncertainty estimate of the GICC05 timescale is derived from the
number of potential annual layers that the investigators found difficult
to interpret. These layers were counted as ½ ± ½ yr, and the so-called
maximum counting error (mce) is defined as one half times the number
of these features. Strictly speaking, the value of the mce cannot be interpreted
as a standard Gaussian uncertainty estimate, but it is estimated that the
true age of the base of the Northgrippian is within ±47 yr of 8236 yr b2k
with more than 95% probability (Andersen et al., 2006).
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J.-P. Steffensen) via the NGRIP Steering Committee. Hence, although
the stratotype localities are in a remote region and, unlike other GSSPs,
cannot be easily seen in the field, free access to the NGRIP1 and
NGRIP2 cores, in which the Greenlandian and Northgrippian GSSPs
are defined, can be assured at the University of Copenhagen. 

The Meghalayan Stage/Age; Upper/Late Holocene Sub-

series/Subepoch

The Meghalayan Stage/Age is named with with reference to the
northeastern Indian State of Meghalaya in which Mawmluh Cave, which
is the stratotype locality, is located (Fig. 4). The cave is on the Megha-
layan Plateau, an area of conglomerates, sandstones, coal and lime-
stones, that has been intensely karstified due to the exceptional
amount of rainfall received in the region. Indeed, this is believed to be
one of the wettest locations on Earth. The 7 km long Mawmluh Cave

(entrance 25°15'44''N; 91°42'54''E) is at the southern edge of the pla-
teau, is overlain by 30–100 m of limestone and sandstone, and formed
along the contact between the Lower Eocene Lakadong dolomite
(within the Sylhet Limestone Formation) and the Therria Sandstone
(Breitenbach et al., 2015). The closest municipality is the town of
Sohra (Cherrapunji), which is approximately 58 km southeast of the
provincial capital, Shillong, and 15 km north of the border with Ban-
gladesh.

Mawmluh Cave contains numerous speleothems (Breitenbach et
al., 2015; Myers et al., 2015), the oldest published record from these
being from speleothem KM-A (Fig. 5). This has provided a uranium-
series dated Upper Pleistocene to Upper Holocene stable isotope pro-
file (δ18O: Fig. 6; Berkelhammer et al., 2012), which shows a marked
shift to heavier isotopic values at ~4.2 ka, reflecting an abrupt reduc-
tion in precipitation due to a weakening of the monsoon across the
Indian sub-continent and southeast Asia. More widely, it initiates the
4.2 ka event, a significant reorganisation of ocean and atmosphere cir-
culation patterns (the ‘Holocene Turnover’: Paasche et al., 2004; Paasche
and Bakke, 2009). It has also been described as the ‘4.07 ka climatic
anomaly’ (Railsback et al., 2018). This event is recorded in proxy records
across seven continents from North America and Europe, through West
Asia to China; and from Africa, Andean-Patagonian South America,
Antarctica and the central North Pacific (Mayewski et al., 2004; Staub-
wasser and Weiss, 2006; Schimpf et al., 2011; Peck et al., 2015; Chase
et al., 2017; Weiss, 2017; Bailey et al., 2018). Most mid- and low-lati-
tude records indicate the abrupt onset of a two to three century aridifi-
cation (e.g., Booth et al., 2005; Parker et al., 2006; Dixit et al., 2014b;
Cheng et al., 2015; Kaniewski et al., 2017), while a few show a shift
to wetter conditions (e.g., Zielhofer et al., 2017). Significant deflection
or weakening of the East Asian Summer Monsoon and the Indian
Summer Monsoon occurs from ~4.2 ka (Wang et al., 2005; Yang et al.,
2011; Kathayat et al., 2017), while the abrupt onset of century-scale
drought in Australia begins at this time with alteration of the Indo-
Australian Monsoon (Quigley et al., 2010; McGowan et al., 2012). In
northern high latitude regions, ‘neo-glacial’ conditions with marked gla-
cier advances are pronounced at ~4.2 ka (e.g., Andresen and Björck,
2005; Menounos et al., 2008; Larsen et al., 2012; Balascio et al., 2015)
with glaciers, while lower Antarctica sea-surface temperatures and
increased sea-ice cover start abruptly at ~4.2 ka onwards (Peck et al.,
2015). In many low latitude regions, the abrupt aridification around
4.2 ka may, in some areas, have had profound societal effects, with
rain-fed region abandonments, habitat-tracking to riverine refugia,
and societal collapses visible archaeologically across Spain, Greece,
Palestine, Egypt, Mesopotamia, the Indus Valley and the Tibetan Pla-
teau (Stanley et al., 2003; Ponton et al., 2012; Weiss, 2014; d’Alpoim
Guedes et al., 2016; Weiss, 2017; Blanco-Gonzalez et al., 2018) syn-
chronous with the collapse of significant Neolithic societies in the regions
of the Yangtze and Yellow River and North China (Liu and Feng, 2012;
Guo et al., 2018). In central Africa, the first stage of Bantu expansion
is coincident with the 4.2 ka event (Maley and Vernet, 2015), while
significant changes in farming practices around 4.2 ka are evident in
the American Southwest and the Yucatan (Merrill et al., 2009; Torres-
cano-Valle and Islebe, 2015). As with the 8.2 ka event, therefore, the
4.2 ka event was global or near global in nature and constitutes a time-
stratigraphic marker horizon for defining the base of the Meghalayan
Stage/Age and the Upper/Late Holocene Subseries/Subepoch.
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The forcing mechanisms behind the 4.2 ka event are not well under-
stood, but may be linked to the southward migration of the Inter-Tropical
Convergence Zone (Mayewski et al., 2004) and/or cooling of North
Atlantic surface waters (Bond et al., 1997), while in the Pacific, tropical
‘deep’ waters may also have cooled sufficiently to allow a switch-on
of the modern El Niño Southern Oscillation (ENSO) regime (Gomez et
al., 2004), which inhibits and weakens the Asian monsoon resulting
in widespread drought conditions (Fisher et al., 2008; Fisher, 2011).
As the 4.2 ka event is strongly recorded in proxy climate records from
mid- and low latitudes, the stable isotope signal of the event in the Maw-
mluh Cave speleothem constitutes an appropriate marker horizon for
the base of the Meghalayan Stage/Age and Late Holocene Subseries/
Subepoch.

The stable isotope profile from the KM-A speleothem (Fig. 6) shows
a low-frequency strengthening of the monsoon from ~12,000 until
6000 yr BP. The monsoon subsequently weakened and the stalagmite
ceased to grow at 3600 yr BP. The most notable feature of the record
is a two-step increase in isotopic values beginning at 4303 yr BP and
ending at 3888 yr BP, spanning 415 years (Fig. 6). The more intense
period of weakened monsoon occurred from 4071 to 3888 yr BP, span-
ning an interval of 183 years (shown by the red arrows on Fig. 6). The
event was characterised by an overall shift of 1.5‰ in δ18O, approxi-
mately equivalent to a 20–30% decrease in monsoon rainfall. The unique
characteristics of this record are a combination of good age control

Figure 4. Location of Mawmluh Cave in northeastern India, the type locality for the Meghalayan Stage/Age and its corresponding Upper/

Late Holocene Subseries/Subepoch.

Figure 5. (a) Speleothem KM-A from Mawmluh Cave, Meghalaya,

northeast India, showing (b) the position of the 4.2 ka event. The

speleothem is ~308 mm long.
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derived through U-Th dating of the stalagmite (see below), and a sam-
ple resolution of around, or less than, 5 years.

An age model for the stable isotope record for speleothem KM-A
was developed using a Monte Carlo fitting procedure through 12 U-Th
dates (Scholz and Hoffman, 2011). The analytical uncertainty on the
two U-Th dates closest to the 4.2 ka event (3654 and 4112 yr BP) are
20 and 30 years respectively, with a third date at 5084 yr BP having an
uncertainty of ±32 years. The KM-A record shows linear growth rates
during this period which provides further confidence in the timing
(onset and duration) of the 4.2 ka event (Berkelhammer et al., 2012).
The first registration of the event in the stable isotope record occurs at
~4300 yr BP followed by a second marked increase in stable isotope
values at ~4100 yr BP. The abrupt increase in stable isotope values is
the primary boundary marker for the GSSP, and hence a date of 4200
yr BP, which effectively marks the mid-point between these two mod-
elled ages, can be assigned (Fig. 6). The age estimates are well within
the range of ages for climatic proxies from other records for the 4.2 ka
event described above. Here, the U-Th ages are expressed relative to a

baseline date of 1950 CE and are therefore directly comparable with
the calibrated radiocarbon time scale. However, in order to maintain
consistency with the earlier Holocene GSSPs (the Greenlandian and
Northgrippian) which are dated using the GICC05 ice-core chronol-
ogy relative to the b2k datum, we quote the age of the Mawmluh spe-
leothem GSSP as 4250 yr b2k (before 2000 CE: see above). Accordingly,
the GSSP for the Meghalayan Stage/Age and corresponding Upper/
Late Holocene Subseries/Subepoch is defined in the Mawmluh Cave
speleothem from northeast India, with a modelled age of 4250 yr b2k.

Access to Mawmluh Cave in Meghalaya, northeast India, can be
arranged through the National Cave Research and Protection Organi-
zation (http://caves.res.in), which is registered under the Government
of India Societies Registration Act of 1860. This is currently headed
by Dr Jayant Biswas, at the Central Office, 3/40 Civil Lines, Rajalab,
Raipur, 492001C.G., India. The speleothem KM-A, in which the GSSP
for the Meghalayan Stage/Age and the coincident Late/Upper Holo-
cene Subseries/Subepoch are recorded, will be conserved at the Birbal
Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India.
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Figure 6. The Mawmluh Cave δ 18O record for speleothem KM-A, showing the position of the 4.2 ka event on the stable isotope trace (after

Berkelhammer et al., 2012). The continuous black line through the isotope trace is a low pass filter removing any variability with a frequency

higher than 10 years. Red circles mark all U-Th dates obtained, which are given with their 2σ analytical uncertainty in black boxes. Age

uncertainty (95% confidence interval) was assessed using a Monte Carlo fitting procedure through the U-Th dates, and is also shown by vari-

ations in colour along the trace. The envelope of the event (onset and termination) is shown by the arrowed red lines, and the beginning of the

most intensive phase of weakened monsoon is shown by a third arrowed red line: their dates (in red) are given with uncertainty that is also

assessed using the Monte Carlo fitting procedure. See Berkelhammer et al. (2012) for details on the age model calculations. The position of

the GSSP, with a modelled age of 4200 yr BP (4250 b2k) is indicated by the green arrow. Note that the 8.2 ka event also registers as a signifi-

cant excursion in the stable isotope record from Mawmluh Cave.
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Summary and Conclusions

Whereas most current GSSPs use biostratigraphic data as primary
markers, it has been recommended that future GSSPs should have
physico-chemical markers as an integral part of their guiding criteria
(Smith et al., 2014; Miller and Wright, 2017). Indeed, as Head and Gib-
bard (2015) have noted, the International Stratigraphic Guide (Hedberg,
1976, p. 82; Salvador, 1994, p. 88) allows certain methods of correla-
tion, such as climatic, palaeomagnetic, and isotopic, to have greater
emphasis for Quaternary chronostratigraphy. The subdivision of the
Holocene as outlined above is therefore entirely in keeping with that
recommendation, as all three of the GSSPs are defined on the basis of
physical and chemical markers. These reflect abrupt climatic events at
the onset of the Holocene (~11.7 ka), at ~8.2 ka and ~4.2 ka, all of which
are global or near global in their expression. Stable isotope records in
particular, from both Holocene ice-core and speleothem successions,
have proved to be remarkably sensitive proxies for climate change, and
can be dated with a very high degree of accuracy and precision. Indeed,
the designated GSSPs described here may be the best-resolved, both
stratigraphically and temporally, within the entire geological time scale.
They closely accord with the criteria for boundary stratotypes outlined in
Remane et al. (1996), and should provide stable points of reference
for Holocene stages/ages and subseries/subepochs into the future. 

Ratification of the Holocene GSSP in 2008 established the prece-
dent of using an ice core to define a GSSP, and this has now been fol-
lowed with the Northgrippian Stage GSSP. However, ratification of
the Meghalayan Stage GSSP in a speleothem sets a new precedent
and not only facilitates unusually high dating precision but allows a
GSSP to be displayed for the first time in a museum. Ratification of
the Lower/Early, Middle, and Upper/Late Holocene (corresponding
precisely to the Greenlandian, Northgrippian and Meghalayan stages/
ages) now formalises the rank of subseries/subepoch for the Holo-
cene. This finally resolves the editorial dilemma of whether to capital-
ise the initial letter of the positional term (Head et al., 2017) for this
time interval.
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