ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ И ВОЗРАСТ (SHRIMP II) МЕТАМОРФИЧЕСКИХ И МАГМАТИЧЕСКИХ ПОРОД В КОТУЙКАН-МОНХОЛИНСКОЙ ЗОНЕ АНАБАРСКОГО ЩИТА

Представлены результаты изучения состава, возраста U-Pb методом по цирконам (SHRIMP II), изотопного состава Nd и Sr метаморфических и магматических образований Котуйкан-Монхолинской тектонической зоны. Определен микроэлементный состав циркона из протерозойских кварцамфиболовых кристаллосланцев (2024 ± 20 млн лет), анортозитов ($1959 \pm 9 - 1862 \pm 25$ млн лет), пироксенитов (2079 ± 77 млн лет). Гранитоиды представлены позднеархейскими санукитоидами (2702 ± 9), а также протерозойскими гранитогнейсами и бластокатаклазитами ($1963 \pm 16 - 1818 \pm 27$ млн лет). Nd-модельный возраст анортозитов и санукитоидов 3,2-3 млрд лет, протерозойских кварц-амфиболовых кристаллосланцев и гранитоидов 2,74-2,65 млрд лет.

Ключевые слова: Анабарский щит, гранитогнейсы, анортозиты, пироксениты, санукитоды, состав циркона, U-Pb возраст.

The paper presents data on bulk rock composition, U-Pb zircon age determinations (SHRIMP II), the isotopic composition of Nd and Sr for metamorphic and igneous rocks of the Kotuykan-Monholinskaya tectonic zone. The trace elements compositions of zircons from Proterozoic quartz-amphibole schists $(2024 \pm 20 \text{ Ma})$, anorthosites $(1959 \pm 9 - 1862 \pm 25 \text{ Ma})$, pyroxenites $(2079 \pm 77 \text{ Ma})$ are studied. The granitoids presents by Late Archean sanukitoids $(2702 \pm 9 \text{ Ma})$, Proterozoic granites and blastocataclasites $(1963 \pm 16 - 1818 \pm 27 \text{ Ma})$. The Nd model age for sanukitoids and anorthosite of 3.2-3.0 Ga, for Proterozoic quartz-amphibole schists and granitoids of 2.74-2.65 Ga.

Keywords: Anabar Shield, granite-gneiss, anorthosites, pyroxenites, sanukitoids, zircon composition, U-Pb age.

Характерная особенность позднеархейского и раннепротерозойского этапов становления Сибирского кратона – заложение зон долгоживущих глубинных разломов, приуроченных к границам архейских гранулитовых блоков. Вдоль наиболее крупных долгоживущих разломов формировались проходящие в мантию зоны тектонической активности с повышенными тепловыми потоками и большей проницаемостью для флюидов. Развитие таких зон сопровождалось интенсивными процессами катаклаза и милонитизации, повторного складкообразования и регрессивного метаморфизма, проявлением основного и кислого магматизма, неоднократной мигматизацией и гранитизацией [7, 9]. В строении Анабарского выступа фундамента Сибирского кратона, согласно Анабаро-Вилюйской серийной легенде Госгеолкарты-1000/3, выделяются три архейские структурно-формационные зоны (СФЗ), сложенные породами гранулитового метаморфизма (с запада на восток): Маганская, Далдынская и Хапчанская, разделенные зонами глубинных разломов и диафтореза. Котуйкан-Монхолинская тектоническая зона ранга структурно-формационной подзоны (далее по тексту КМ СФпЗ) разграничивает Ильинскую (на западе) и Далдынскую (на востоке) гранулитовые глыбы. В Далдынской глыбе вскрываются наиболее древние образования Анабарского щита [1]. Изучение микроэлементного состава циркона в гранулитах далдынской серии в точках датирования (SHRIMP II) позволило определять генезис циркона разного возраста [4]. Наиболее древний магматиче-

ский циркон с возрастом $3050 \pm 12 - 3012 \pm 15$ млн лет установлен в ядерных частях гетерогенных зерен. По оболочкам циркона с возрастом 2683 ± 20 млн лет фиксируется позднеархейский этап гранулитового метаморфизма и анатексиса. Циркон с возрастом $1990 \pm 12 - 1971 \pm 12$ млн лет распространен во всех изученных типах гранулитов и связан с протерозойским ультравысокотемпературным метаморфизмом и анатексисом. На декомпрессионной стадии гранулитового метаморфизма в плагиогнейсовой неосоме мигматитов формировался наиболее поздний ультраметагенный циркон с возрастом 1928 ± 18 млн лет. Для уточнения возраста полигенных образований Котуйкан-Монхолинской зоны использована аналогичная [4] методика, основанная на изучении микроэлементного состава циркона в точках локального U-Рь датирования.

Геологическое строение. КМ СФпЗ прослеживается на 300 км в северо-западном направлении, ширина ее от 25–30 км в средней части до 60–70 км в южной и северной. Зона имеет линзовидно-блоковое строение с широко проявленными процессами катаклаза, милонитизации и выполнена различными по составу и возрасту продуктами диафтореза и тектонического меланжа [11]. КМ СФпЗ вначале интерпретировалась как зона растяжения и корневая зона глубинного разлома [6, 7], затем как сутура (коллизионный орогенный пояс) [10, 16, 27], коллизионная зона тектонического меланжа [11] и как тектоно-флюидитная зона [8].

Региональная геология и металлогения, № 54, 2013

Рис. 1. Схематическая геологическая карта верхнего течения р. Бол. Куонамка в районе устья р. Монхоло (по материалам Госгеолкарты-200 [3] с изменениями и дополнениями)

1 – четвертичные образования; 2 – дайки габбродолеритов раннего триаса; 3 – дайки долеритов среднего рифея; 4 – лейкограниты двуслюдяного монхолинского комплекса; 5 – гранитоиды маганского аляскит-лейкогранит-мигматитового комплекса; 6 – мигматит-гнейсовый котуйкан-монхолинский комплекс; 7 – габбронорит-анортозитовый амбардах-коялахский комплекс; 8 – монцониты анабарского комплекса; 9 – перидотит-пироксенитовый далдынский комплекс; 10 – гранулиты верхнеанабарской серии; 11 – мигматизация и гранитизация; 12 – амфиболовые и биотитамфиболовые гнейсы; 13 – гранатовые гнейсы; 14 – амфиболовые кристаллосланцы и амфиболиты; 15 – кварциты; 16 – зоны регрессивного метаморфизма; 17 – эпидот-актинолитовые, эпидот-хлорит-актинолитовые, эпидот-биотитовые диафторические сланцы; 18 – зоны катаклаза и милонитизации; 19 – разломы; 20 – места отбора и номера проб для изотопных исследований

Основу КМ СФпЗ слагают мигматит-гнейсовые образования котуйкан-монхолинского комплекса (рис. 1, $dgPR_1km$). Преобладают мигматизированные биотитовые, биотит-амфиболовые, амфиболовые, часто гранатсодержащие гнейсы и амфиболовые кристаллические сланцы с лентовидными прослоями глиноземистых гнейсов, кварцитов, амфиболитов, а также островодужных метавулканитов [9, 11]. Широко развиты интрузивные образования билляхского и монхолинского комплексов, на севере подзоны закартированы массивы салтахского, а на юге маганского и единичные интрузивы харапского комплексов. Присутствуют также тектонические блоки гранулитов [7, 11] (рис. 2, *a*, *б*), метаультрамафитов далдынского (συAR₂dl) и анортозитов амбардах-коялахского комплекса (ηPR₁*ak*). Возраст гранитогнейсов в КМ СФпЗ 1916 ± 9 млн лет [8].

Для анортозитов из Центрального массива Sm-Nd методом получена минеральная (Pl-Opx-Cpx-WR) изохрона 2,18 млрд лет при $\varepsilon_{Nd}(T)$ –6,1 [14]. По валовым пробам из Восточного массива построена Sm-Nd изохрона 2,55 млрд лет при $\varepsilon_{Nd}(T)$ –2,6, на основании чего для анортозитов, формирующихся в результате плавления гранулитов нижней коры, был принят возраст 2,6 млрд лет [10].

Методика работ. При подготовке к изданию комплекта Госгеолкарты-1000/3 листа R-49 (Оленек) были проведены полевые исследования в средней части КМ СФпЗ по бортам р. Бол. Куонамка между притоками Эйими-Юряге и Чардат, а также по водоразделу рек Бол. Куонамка и Монхоло (от устья р. Монхоло до левого притока р. Балаганах). Здесь КМ СФпЗ имеет ши-

Рис. 2. Обнажения гранулитов и гранитоидов КМ СФпЗ

 a, δ — правый борт р. Бол Куонамка напротив устья р. Монхоло: a — двупироксеновые плагиогнейсы врехнеанабарской серии с линзовидно-полосчатой текстурой (обн. 504); δ — глыба массивных мафитовых двупироксеновых кристаллосланцев, вдоль контакта с которой срезается изоклинальноскладчатая структура полосчатых мезократовых гранулитов (обн. 506); e, c — левый борт р. Монхоло: e — позднеархейские кварцевые монцодиориты Усть-Монхолинского массива, в верхней части штуфа рассеченные жилой протерозойских пегматоидных гранитов (обн. 161); e — мигматиты котуйкан-монхолинского комплекса (обн. 160). Номера обнажений соответствуют номерам проб на рис. 1

рину примерно 14 км и различается по составу северо-восточной и северо-западной частей [2, 6, 11]. Восточная часть сложена ассоциацией биотит-амфиболовых и амфиболовых плагиогнейсов и амфиболитов, в разной степени гранитизированных. В приустьевой части р. Монхоло залегает Усть-Монхолинский массив гнейсовидных монцонитов и монцодиоритов, который предварительно относился к раннепротерозойскому билляхскому гранодиорит-гранит-граносиенитовому комплексу. Однако гранитоиды Усть-Монхолинского массива имеют позднеархейский возраст 2702 ± 9 млн лет [5]. Окружающие массив породы представлены протерозойскими биотитовыми гранитогнейсами и мигматитами котуйкан-монхолинского комплекса. В полях мигматитов отмечаются линзовидные тела размером до 0,2-0,3 × 4 км гранитоидов маганского аляскит-лейкогранит-мигматитового комплекса

($l\gamma m PR_1 mg$) (рис. 1). В западной части КМ СФпЗ преобладают гранитогнейсы, с ними тесно ассоциируют кварциты, слагающие крупные линзовидные тела предположительно кварцолитовой природы [6, 11]. Окварцованные двуслюдяные граниты в правобережье р. Монхоло в районе устья руч. Этуэбин отнесены нами к монхолинскому комплексу ($l\gamma PR_1$ mh) (рис. 1).

Изотопно-геохимическими исследованиями в восточной части КМ СФпЗ охвачены обнажения гранулитов, анортозитов, метаультрамафитов и гранитоидов, в юго-западной части – кристаллических сланцев, гранитогнейсов и окварцованных гранитоидов. Выполнено 20 анализов макро- и микроэлементов, изучены изотопный U-Pb состав циркона в 10 пробах и его микроэлементный состав в четырех монофракциях, определен изотопный состав Sm, Nd, Rb, Sr в шести валовых пробах. Аналитические исследования в лабораториях ВСЕГЕИ: общий силикатный анализ пород — рентгеноспектральным флуоресцентным методом (аналитик Б.А. Цимошенко), определения редких элементов, Cu, Zn, Pb, Li методом ICP-AES (аналитик Э. Г. Червякова), остальные элементы, в том числе РЗЭ, методом ICP-MS (аналитики В. А. Шишлов, В. Л. Кудряшов). При изучении Rb-Sr и Sm-Nd систем концентрации элементов определены методом изотопного разбавления изотопные составы — на девятиколлекторном массспектрометре TRITON в статическом режиме (аналитик Е. С. Богомолов). Методика локального U-Pb анализа циркона, его микроэлементного состава, обработки данных и их интерпретации соответствует приведённой в работе [4].

Петрографическая и геохимическая характеристика. Гранулиты верхнеанабарской серии преобладают в тектонических блоках и представлены мезократовыми линзовидно-полосчатыми гиперстен-амфиболовыми плагиогнейсами (пр. 507). Их минеральный состав (%): Pl_{40} * 55, Qtz 20, Am 15–20, Hyp 5, Bt 1–2, Mag 1, Ap <1, по химическому составу соответствуют диоритам-тоналитам (рис. 3). Плагиогнейсы бедны Cs и Rb, имеют положительные аномалии K, Ba и Pb и отрицательные Th, Nb, P, Ti (рис. 4, *a*, *б*). При сумме содержаний редкоземельных элементов 106 мкг/г характеризуется фракционированным распределением P3Э ((La/Yb)_N 12–13) и отсутствием Eu-аномалии (Eu/Eu* 0,94)**.

Линзовидные прослои амфибол-двупироксеновых кристаллосланцев (рис. 2, *a*, пр. 504) (%): Pl_{40} 45, Am 20, Opx 15, Cpx 10, Qtz 5, Bt 5, Ilm+Mag 2, Ap <1, по химическому составу соответствуют габброидам (рис. 3). Графики распределения редких элементов в них подобны графикам плагиогнейсов, но более сглажены (рис. 4, *в*, *г*). Содержание РЗЭ ниже (Σ РЗЭ 89 мкг/г) со слабофракционированным распределением (La/Yb)_N 3,86 при отсутствии Eu-аномалии (Eu/Eu* 0,89).

В изоклинально-складчатых гранулитах наблюдалась метаморфизованная в гранулитовой фации глыба (фрагмент дайки?) массивных двупироксеновых кристаллосланцев (рис. 2, δ , пр. 506) (%): Pl₅₀ 55, Cpx 25, Opx 10, Am 5, Mag 5, Ap <1. Они наиболее бедны редкими и редкоземельными элементами и находятся в нижней части диаграмм на рис. 4, *a*, *б*. Характерна низкая величина Σ P3Э 36 мкг/г, слабо выражен положительный наклон почти горизонтального графика P3Э ((La/Yb)_N 0,98), Eu-аномалия отсутствует (Eu/Eu* 1,05).

Часто встречаются гиперстенсодержащие гранат-биотитовые плагиогнейсы (пр. 503) (%): Qtz 35, Pl_{35} 30, Grt 15, Bt 15, Hyp 5, Ap + Mag <1. Породы на рис. 3 соответствуют тоналитам – гранодиоритам, они нормативно корундовые и наиболее обогащены крупноионными литофилами Cs, Rb, Ba, K, Pb и P3Э (Σ P3Э 113,57 мкг/г). Отчетливо проявлено

Рис. 3. Положение магматических и метаморфических пород КМ СФпЗ на диаграммах Q-Р [20] (а) и R₁-R₂ [21] (б) Поля на диаграмме (a) слева направо и сверху вниз: to – тоналит (трондьемит), gd - гранодиорит, ad - адамеллит, gr гранит, dq – кварцевый диорит (кварцевое габбро – кварцевый анортозит), mzdq – кварцевый монцодиорит, mzq – кварцевый монцонит, sq – кварцевый сиенит, go – габбро (диорит – анортозит), mzgo – монцогаббро (монцодиорит), mz – монцонит, s – сиенит. Кроме того, на диаграмме (б), um – ультрамафитовые породы, адо – щелочное габбро, дп габбро-нориты, god – габбродиорит, mzd – монцодиорит, d – диорит, agr – щелочной гранит. Фигуративные знаки: 1 - гиперстен-амфиболовые плагиогнейсы (507); 2 - прослой амфибол-двупироксеновых кристаллосланцев (504) в плагиогнейсах; 3 – гранат-биотитовые плагиогнейсы (503); 4 — массивные двупироксеновые кристаллосланцы (506); 5 пироксениты и горнблендиты (164, 164-1, 164-11); 6 – анортозиты (150, 151-1); 7- монцодиориты Усть-Монхолинского массива (161, 163, 163-1); 8-10 - котуйкан-монхолинский комплекс: 8 – биотитовые гранитогнейсы (160), 9 – гранатсодержащие бластокатаклазиты гранитного состава (505), 10 – белые лейкогранитогнейсы (500а); 11 – аляскитовые граниты маганского комплекса (162); 12 – двуслюдяные граниты монхолинского комплекса

фракционированное распределение РЗЭ ((La/Yb)_N 11) с незначительным Еи-минимумом (Eu/Eu* 0,91).

Амфиболизированные пироксениты (пр. 164) сложены крупными гомоосевыми псевдоморфозами зеленого амфибола по клинопироксену. Краевые части тел представлены горнблендитами, состоящими на 80% из крупных призматических выделений амфибола в интерстициях с агрегатами мелких зерен плагиоклаза (15–20%). Пироксениты имеют низкие содержания Cs, Rb, Ba, U, Sr, P, но в них проявлены положительные аномалии K и Pb, а в амфиболитах кроме того Cs, Rb, Ba (рис. 4, *в*, *г*). Характерно низкое содержание P3Э (Σ P3Э 16–28 мкг/г), Еuминимум отсутствует или проявлена слабая положительная аномалия Eu (Eu/Eu* 0,98–1,18). Фиксируется слабый отрицательный наклон графиков распределения P3Э (La/Yb)_N 1,26–3,04.

Балаганахский анортозитовый массив амбардахкоялахского комплекса размером 6 × 1 км в центральной части представлен мономинеральными анортозитами, иногда с корундом [6]. В краевых частях массива они постепенно сменяются габброанортозитами, сложенными деформированным Pl₆₀₋₇₀ (80–85%), иногда с округлыми включениями кварца (до 5%), и темноцветными минералами Am + Chl + Ep (15%). Анортозиты наиболее обеднены редкими элементами, содержания Th и Nb очень низкие, содержания Zr, Ti, Y (Σ P3Э 9–14 мкг/г) ниже, чем в примитивной мантии.

Рис. 4. Мультиэлементные диаграммы для пород КМ СФп3

а, б – гранулиты и кристаллические сланцы; в, г – анортозиты, пироксениты и амфиболиты; д, е – гранитоиды. Фигуративные знаки: 1 – гиперстен-амфиболовые плагиогнейсы (507); 2 – прослой амфибол-двупироксеновых кристаллосланцев (504) в плагиогнейсах; 3 – гранат-биотитовые плагиогнейсы (503); 4 – массивные двупироксеновые кристаллосланцы (506); 5 – кварц-амфиболовые кристаллосланцы (500); 6 – пироксениты и горнблендиты (164, 164-1, 164-11); 7 – анортозиты (150, 150-1); 8 – монцодиориты Усть-Монхолинского массива (161, 163, 163-1); 9 – биотитовые гранитогнейсы котуйкан-монхолинского комплекса; 10 – белые лейкогранитогнейсы (500а); 11 – аляскитовые граниты маганского комплекса (162); 12 – окварцованные двуслюдяные граниты монхолинского комплекса. Нормализация содержаний проведена по составу примитивной мантии и хондрита по [28]

^{*} Здесь и далее: Ат – амфибол, Ар – апатит, Вt – биотит, Chl – хлорит, Cpx – клинопироксен, Ep – эпидот, Grt – гранат, Hyp – гиперстен, Ilm – ильменит, Mag – магнетит, Mc – микроклин, Mnz – монацит, Mus – мусковит, Opx - ортопироксен, Or – ортоклаз, Pl $_{\rm 45}$ – плагиоклаз и его номер, Sil – силлиманит, Qtz – кварц.

^{**} $Eu/Eu^* = Eu_N / [Sm_N \times Gd_N]^{\vee}$, Ce/Ce* = Ce_N / $[La_N \times Pr_N]^{\vee}$, где Eu_N , Sm_N, Gd_N... (Lu/Gd)_N – содержание и отношение содержания элементов, нормированных по хондриту.

Отмечаются положительные аномалии Cs, Rb, Ba, U, K, Pb, особенно выражены Sr и Eu (Eu/Eu*4–6). В них отчетливо проявлено фракционированное распределение P3 \ni (La/Yb)_N 11,3–17,4.

Монцониты, монцодиориты и кварцевые монцодиориты Усть-Монхолинского массива (рис. 2, в, пробы 161, 163, 163-1), %: Pl₂₂₋₄₅ 25-40, Am 15-20, Qtz 15-20, Mc 15, Bt 10, Ilm + Ttn 2, Ap 0,5. В них проявлена двойственность геохимических характеристик, которая выражается в сочетании повышенных содержаний как совместимых (K, Ba, Sr), так и несовместимых (Mg, Cr, Ni, Co) элементов. По геохимическим критериям монцонитоиды Усть-Монхолинского массива соответствуют низкотитанистым санукитоидам [5].

Гранитогнейсы и мигматиты котуйкан-монхолинского комплекса (рис. 2, *г*, пр. 160), (%): Otz 30, Pl₂₀ 30, Mc 25, Bt 15, Ap + Mag + Mnz <1, по химическому составу существенно отличаются от пород Усть-Монхолинского массива (рис. 4, д, е). Гранитогнейсы плюмазитовые (ASI 1,04-1,13), в большинстве железистые и шелочно-известковистые. Характерны положительные аномалии K, Rb, Th, Рь, отрицательные Ва, Nb, Sr, P, Ti, иногда La, Ce. Присутствуют как гранодиоритогнейсы, наиболее обогащенные РЗЭ (ΣРЗЭ 408 мкг/г), так и гранитогнейсы, бедные РЗЭ (ΣРЗЭ 73 мкг/г). Те и другие характеризуются резко выраженным Еи-минимум (Eu/Eu* 0,14-0,35) и в разной степени фракционированным распределением РЗЭ ((La/Yb)_N 5,0-16,5). В меланократовых разностях иногда отмечаются повышенные содержания Li, Be, Ta.

Гранат-амфиболовые кристаллосланцы котуйкан-монхолинского комплекса (Am 40, Qtz 40, Pl 10, Ilm 5, Bt + Grt + Ap <1) по химическому составу не соответствуют магматическим породам из-за очень низкого содержания Na и K, поэтому на рис. 3 их точки находятся за пределами диаграмм. Они сильно обеднены Cs, Rb, Ba, Sr, в меньшей степени Ti и P, но имеют положительные аномалии Th, U, Pb. По содержанию P3Э (Σ P3Э 113,57 мкг/г) и графику их распределения (La/Yb)_N 9,1) они близки к гранатсодержащим гранулитам, но имеют более выраженный Euминимум (Eu/Eu* 0,85).

Аляскитовые граниты (пр. 162) маганского комплекса в западном экзоконтакте Усть-Монхолинского массива (%): Pl₁₈ 40, Qtz 30, Mc 25, Bt + Chl 5, Mus 2, Ap, Mag <1. В них отчетливо выражены положительные аномалии K, U, Pb, отрицательные Nb, P, Ti, отмечается высокое содержание Ba и P3Э (Σ P3Э 355 мкг/г), отчетливо выражен Eu-минимум (Eu/Eu* 0,64) и фракционированное распределение P3Э ((La/Yb)_N 80,90) при высоком отношении Sr/Y 27,4.

Окварцованные двуслюдяные граниты (пробы 159, 502) монхолинского комплекса (Qtz 50–70, Pl₁₅ 10–15, Mc 15–25, Bt + Mus 5, Sil, Mnz <1) имеют невысокое содержание РЗЭ (Σ РЗЭ 100–155 мкг/г), как положительные, так и отрицательные аномалии Eu (Eu/Eu* 0,7–1,54) и фракционированное распределения РЗЭ ((La/Yb)_N 38–118).

Результаты определения возраста. В массивных *двупироксеновых кристаллосланцах* (пр. 506) циркон мелкий в виде неправильно-призматических и изометричных зерен с хорошо заметными мелкими гранями на их поверхности. Внутреннее строение в КЛ не выражено, зерна черные однородные, с близким содержанием Th 48–245 и U 85–228 мкг/г, Th/U 0,59–1,1. По пяти измерениям получено конкордантное значение возраста 1975 \pm 13 млн лет, которое по характеру циркона интерпретируется как возраст гранулитового метаморфизма. Первичный циркон в породе не выявлен.

В пироксенитах наиболее древнее значение возраста 2341 ± 24 млн лет получено по изометричному зерну циркона (5.1 на рис. 5 и 6), характеризующемуся следующим микроэлементным составом (мкг/г): Th 92,1; U 372; Hf 12231; Y 793; Σ P3 \ni 644; Th/U 0,25; Eu/Eu* 0,36; Ce/Ce* 3,06; (Sm/La)_N 1,27; (Lu/Gd)_N 31,4. Температура кристаллизации циркона 771 °C по титановому геотермометру (T_П^{Zir})* [29]. Судя по геохимическим показателям, этот циркон формировался в магме кислого состава [17, 19] и для пироксенитов является ксеногенным.

Геохимические характеристики обломков с широкой светлой оболочкой (3.1) с возрастом 2079 \pm \pm 77 млн лет (мкг/г): Th 53,5; U 52,5; Hf 10 930; Y 359; Σ P3 \ni 309; Th/U 1,01; Eu/Eu* 0,26; Ce/Ce* 83,9; (Sm/La)_N 35,6; (Lu/Gd)_N 17,3. По микроэлементному составу и распределению РЗ \ni эта визуально метаморфогенная оболочка образовалась в результате перекристаллизации магматического циркона [19, 23]. Температура ее образования по титановому геотермометру (T_{II}^{Zir}) [29] 761 °C.

По трем зернам со следами грубой и секториальной зональности (4.1, 8.1, 10.1) получено конкордантное значение возраста 1959 ± 19 млн лет. Общей особенностью зерен из этого кластера является аномально низкое содержание Hf 4744-5959, Ү 76,3-83,7 и Р 1,05-11,6 мкг/г, что свойственно циркону высокого давления, претерпевшему перекристаллизацию [23]. Из них два зерна (4.1 и 10.1) со сходными геохимическими характеристиками (Th 34,4-35,7; U 181-204; Hf 6117-5959; Y 76,3–83,7; ΣP3Э 84,8–95,8; Th/U 0,17–0,19; Eu/Éu* 0,58–1,02; Ce/Ce* 1,32–1,79; (Sm/La)_N 0,89-1,43; (Lu/Gd)_N 25,3-32,9) обогащены легкими РЗЭ и, видимо, формировались в условиях гранулитового метаморфизма при высокой флюидонасыщенности. Температура кристаллизации этих цирконов по титановому геотермометру (T_{Ti}^{Zir}) [29] 704 и 833 °С.

Зерна 1.1 и 8.1 с возрастом 1922 \pm 27 и 1993 \pm 29 млн лет имеют следующие геохимические параметры (мкг/г): Th 32,5–42,5; U 149–180; Hf 4744–5541; Y 77,1–80,5; Σ P3 \ni 67–75,9; Th/U 0,22–0,24; Eu/Eu* 0,48–0,54; Ce/Ce* 9,4–11,1; (Sm/La)_N 4,48–8,9; (Lu/Gd)_N 61,3–69,4 резко отличаются бедностью РЗ \ni и особенно легкими лантаноидами. Температура образования этого циркона ($T_{\rm T}^{\rm Zir}$) [29] наиболее низкая (621–643 °C), вероятно, он образовался в результате метаморфической перекристаллизации.

Дискордия с верхним пересечением 1946 \pm \pm 14 млн лет (рис. 5) отражает не возраст пироксенитов, а время перекристаллизации циркона.

В анортозитах циркон изучен в пробах 150 и 151-1. В пр. 150 (рис. 7) он представлен крупными изометричными обломками и мелкими удлиненнопризматическими зернами буровато-желтого цвета и серыми полупрозрачными и матовыми. Наиболее древнее значение возраста 2818 ± 23 млн лет

^{*} Температура кристаллизации циркона рассчитывалась по формуле $T_{n}^{Zir} = -5080/(Log10(Ti)-6)-273$, где Ti – содержание титана в цирконе [29].

Рис. 5. КЛ изображения и возраст циркона из пироксенитов (пр. 164)

На КЛ изображениях циркона показаны участки датирования (светлые окружности) и их номера. Диаметр окружности 20 мкм, N – количество точек датирования, СКВО – среднеквадратичное отклонение для конкордантности.

Рис. 6. Распределение РЗЭ в цирконе из пироксенита (пр. 164)

Номера графиков соответствуют номерам точек измерений на рис. 5. МЦ – типовой магматический циркон по [23]. Нормализация содержаний проведена по составу хондрита по [28]

получено по краевой части двухфазного зерна в точке 150An 4.1, которое содержит (мкг/г) Th 75: U 230;Hf 12 466; Y 699; Σ P3 \ni 649; Th/U 0,33; Eu/ Eu* 0,28; Ce/Ce* 24,6; (Sm/La)_N 12,1; (Lu/Gd)_N 54,6. Температура кристаллизации этого циркона по титановому геотермометру (T_{Ti}^{Zir}) [29] 736 °С. Гене-зис циркона интерпретируется как магматический. По микроэлементному составу (рис. 8) он подобен циркону из гранитоидов [17, 19], резко отличается от геохимических характеристик анортозитов и поэтому не мог кристаллизоваться из анортозитового расплава. По ядерной части зерна 150An 5.1 конкордантный возраст 2396 ± 31 млн лет, содержание (мкг/г): Th 105; U 215; Hf 13 328; Y 356; ΣРЗЭ 328; Th/U 0,49; Eu/Eu* 1,09; Ce/Ce* 7,94; (Sm/La), 4,7; (Lu/Gd)_N 22,6. Температура кристаллизации этого циркона по титановому геотермометру (T_{Ii}^{Zir}) [29] более высокая и составляет 811 °С.

Большинство зерен образует кластер из восьми измерений с конкордантным возрастом 1959 ± ± 9 млн лет. Часть из них черные в КЛ с тонкой осцилляторной зональностью (на рис. 7 показано оптическое изображении типового зерна с точкой 150Ап 3.1). Содержание микроэлементов в этом цирконе (мкг/г): Th 564; U 1045; Hf 9933; Y 1033; ΣP3Э 812; Th/U 0,54; Eu/Eu* 0,22; Ce/Ce* 4,28, наиболее низкое отношение (Lu/Gd)_N 16,5 и (Sm/La)_N 2,58. В этом же возрастном кластере присутствует белый в КЛ циркон (150An 1.1, 1.2, 2.2) с низким содержанием (мкг/г) Th 1-12; U 7,7–512; Hf 7477–9648; Y 10,1–99,2; ΣP3Э 12–63; Th/U 0,2-0,4; Eu/Eu* 1,01-1,59; Ce/Ce* 2,6-3,9; (Lu/Gd)_N 32,4–33,3, который интерпретируется как гранулитовый. Температура кристаллизации циркона с возрастом 1959 ± 9 млн лет 699-717 °С по титановому геотермометру (T_{Ii}^{Zir}) [29]. Таким образом, в анортозитах присутствуют цирконы с возрастом 1959 ± 9 млн лет, различающиеся по содержанию элементов-примесей и температуре кристаллизации. Дискордия, построенная по 15 измерениям, дает близкое верхнее пересечение 1969 ± 15 млн лет.

В анортозитах пр. 151-1 (рис. 9) установлен циркон двух морфологических типов. Первый представлен розовыми изометричными, реже призматическими кристаллами с большим количеством граней, в КЛ обычно светло-серыми с неправильной грубой или секториальной зональностью. Второй тип — прозрачные или желтоватые призматические кристаллы или их обломки, черные в КЛ.

По черному в КЛ незональному зерну 11.1 (рис. 9) получено наиболее древнее значение возраста 1970 ± 27 млн лет, содержание (мкг/г) Th 69; U 1002; Hf 6502; Y 545; Σ P3Э 566; Th/U 0,07; Eu/Eu* 1,03; Ce/Ce* 6,25; (Sm/La)_N 5,64; (Lu/Gd)_N 99. Температура кристаллизации этого циркона по титановому геотермометру (T_{Ti}^{Zir}) [29] 698 °C. Призматическое прозрачное зерно 8.1, светлое в КЛ с грубой зональностью, содержание (мкг/г) Th 0,43; U 19; Hf 8219; Y 163; Σ P3Э 381; Th/U 0,02; Eu/Eu* 4,15; Ce/Ce* 1,41; (Sm/La)_N 1,59; (Lu/Gd)_N 1060,8. Это зерно перекристаллизовано и характеризуется возрастом 1920 ± 84 с относительно большой дискордантностью (14%). Температура кристаллизации этого циркона (T_{Ti}^{Zir}) [29] 731 °C.

Многочисленные светлые в КЛ изометричные зерна (типовые 9.1, 10.1) с секториальной зональностью являются гранулитовыми. Они имеют низкие содержания (мкг/г) Th 0–2, U 2–6, Th/U 0,02–0,3

Рис. 7. КЛ изображения и возраст циркона из анортозитов (пр. 150)

Рис. 9. КЛ изображения и возраст циркона из анортозитов (пр. 151-1)

Рис. 8. Распределение РЗЭ в цирконе из анортозита (пр. 150)

Номера графиков соответствуют номерам точек измерений на рис. 7. МЦ – типовой магматический циркон по [23]. Нормализация содержаний проведена по составу хондрита по [28]

Рис. 10. Графики распределения РЗЭ в цирконе с минимальным возрастом и отношением Th/U 0,01–0,09 из анортозитов (пр. 151-1) и оптические изображения зерен цирконов с точками измерений, их номерами и результатами определения возраста (Ма — млн лет). Оптические изображения циркона с номерами точек измерений соответствуют КЛ изображениям на рис. 9

Рис. 11. Возраст монцодиоритов Усть-Монхолинского массива

В нижней части рис. б показаны типовые цирконы из монцодиоритов Усть-Монхолинского массива в оптическом и КЛ изображениях с результатами определения возраста в млн лет

и большей частью непригодны для датирования. По ним получены большие погрешности измерений возраста 1687 \pm 210 – 1485 \pm 110 и большая величина дискордантности 14–49%.

Черное ядро зерна 13.1 и черная оболочка 4.1 округлого гранулитового зерна показали близкие значения возраста 1847–1844 ± 38 млн лет, содержание (мкг/г) Th 3,8–11; U 668–1668; Hf 7657–10164; Y 648-2128; ΣP3Э 890-2800; Th/U 0,02; Eu/Eu* 1,02–1,72; Ce/Ce* 2,22–3,91; (Sm/La)_N 0,42–0,97; (Lu/Gd)_N181-277. В этих зернах отчетливо выражено обогащение легкими РЗЭ при низких значениях величины (Sm/La)_N, слабо выражены положительная Се- и отрицательная Еи-аномалия (рис. 10), что свойственно гидротермальным или метасоматическим цирконам [23, 26]. Температура кристаллизации этого циркона по титановому геотермометру (T_{ті}^{Zir}) [29] наиболее низкая (624–635 °С). По семи измерениям построена дискордия с верхним пересечением 1862 ± 25 млн лет, указывающая на возраст образования цирконов в анортозитах.

В монцодиоритах Усть-Монхолинского массива циркон представлен однотипными розоватыми и коричневатыми прозрачными и полупрозрачными призматическими и субидиоморфными кристаллами. Размер зерен 150–400 мкм, Ку 1,5–3 (рис. 11, б).

В оптическом изображении отчетливо проявлена тонкая концентрическая ростовая зональность, но в КЛ изображении она видна плохо. Наблюдаются светло-серые однородные каймы обрастания шириной 10–50 мкм и тонкие (шириной 2–3 мкм) белые каймы и наросты на пирамидах зерен. Во внутренних частях зерен U 288–793, Th 175–644 мкг/т, отношение Th/U 0,76. Светло-серые каймы беднее U 73–104, Th 28–60 мкг/т, отношение Th/U 0,57. Белые в КЛ наросты и каймы из-за малых размеров не изучены.

Результаты 29 (из 41) анализов образуют кластер с конкордантным возрастом 2702 ± 9 млн лет (рис. 11, *а*). Близкое значение 2713 ± 9 млн лет дает верхнее пересечение линии дискордии, построенной для 41 измерения. Возраст кайм не отличается от возраста внутренних частей кристаллов (рис. 11, *б*, нижняя часть.) Аналогичное значение 2706 ± 5 млн лет, полученное по отношению ²⁰⁷Pb/²⁰⁶Pb (рис. 11, *б*), свидетельствует о хорошей сохранности U-Pb системы цирконов и принимается в качестве возраста кристаллизации монцодиоритов Усть-Монхолинского массива.

Котуйкан-монхолинский мигматит-гнейсовый комплекс. В гранитогнейсах (пр. 160) циркон призматический розовато-бурого цвета. Размер зерен 100-200 мкм, Ку 1,5-2. В оптическом изображении хорошо проявлено тонкое концентрически-зональное строение кристаллов. Однако оно сильно нарушено метамиктизацией, что отображается в КЛ неправильным чередованием черных и светло-серых зон и пятен (рис. 12). Характерны резкие ко-лебания содержаний U 807–2911, Th 91–1044 мкг/т, отношение Th/U 0,11-1,34. На основании 12 измерений построена дискордия с верхним пересечением 1963 ± 16 млн лет, которое рассматривается как возраст формирования гранитогнейсов. Нижнее пересечением 665 ± 100 млн – результат нарушения уран-свинцовой системы или диффузионных потерь радиогенного свинца и не имеет геологического смысла.

Циркон из бластокатаклазитов (пр. 505) удлиненно-призматический, с черными в КЛ ядрами и темными оболочками с нарушенной зональностью (рис. 13). Черное ядро 6.1 (Th 346, U 888 мкг/г, Th/U 0,40) имеет наиболее древний конкордантный возраст 2687 ± 15 млн лет и по генезису оно скорее всего магматическое. Измерения по другим черным высокоурановым ядрам (U 1047-4078 мкг/г) и оболочкам с низким отношением Th/U 0,02-0,15 укладываются в диапазон 2588-1964 млн лет. Минимальный конкордантный возраст 1905 ± 26 млн лет установлен по заключенному в черную оболочку светлому ядру с неправильной секториальной зональностью (Th 224-266, U 145-152 мкг/г, Th/U 1,52–1,90), которое интерпретируется как обломок зерна гранулитового циркона.

Следовательно, время образования бластокатаклазитов гранитного состава не древнее 1905 \pm \pm 26 млн лет. Возраст более поздних черных оболочек не определен из-за их малой ширины. Данные по дискордии с верхним 2634 \pm 28 и нижним пересечением 1917 \pm 50 млн лет указывают на позднеархейский возраст протолита бластокатаклазитов.

Рис. 12. КЛ изображения и возраст циркона из гранитогнейсов котуйкан-монхолинского комплекса (пр. 160)

Рис. 13. КЛ изображения и возраст циркона из гранатсодержащих бластокатаклазитов котуйкан-монхолинского комплекса (пр. 505). Для зерна с точками измерений 2.1 и 2.2 справа показано его оптическое изображения

В гранатсодержащих кварц-амфиболовых кристаллосланцах (пр. 500) циркон представлен слегка желтоватыми овальными и округлыми зернами, прозрачными и полупрозрачными. Размер зерен 80-200 мкм, Ку 1,3-2,2. В КЛ изображении цирконы состоят из ядер, представленных скругленными обломками с различными типами зональности, и тонких черных оболочек (рис. 14). По двум ядрам с грубой концентрической и секториальной зональностью (12.1 и 7.1) и черной оболочке на одном из них (12.2) получена «дискордия» с верхним пересечением 2820 ± 52 млн лет. Эти измерения характеризуются содержаниями U 88-288, Th 101-141 мкг/г и отношением Th/U 0,51-1,28. Еще по двум измерениям в ядрах с секториальной зональностью (10.1 и 13.1) получена дискордия с верхним пересечением 2527 ± 22 млн лет. В них содержание U 108-110, Th 79-156 мкг/г, Th/U 0,75-1,49.

Для близких по возрасту измерений в грубозональном ядре 5.1 и крае зерна 5.2 получена «дискордия» с верхним пересечением 2417 ± 22 млн лет. Содержание U 122–151, Th 59–72 мкг/г, Th/U 0,5.

По трем ядерным частям с нарушенной ритмичной зональностью (2.1, 4.1, 6.1) получены конкордантный возраст 2024 ± 20 млн лет и верхнее пересечение линии дискордии 2014 ± 13 млн лет. Содержания в ядрах этого возраста (мкг/г): Th 56,7–64,5; U 168–183; Hf 8519–8591; Y 495–720; Σ P3 \ni 364–482; Th/U 0,33–0,37; Eu/Eu* 0,09–0,31; Ce/Ce* 3,8–19,2; (Sm/La)_N 3,54–11,97; (Lu/Gd)_N 20,6–23,2. Температура кристаллизации этого циркона по титановому геотермометру (T_П^{Zir}) [29] 698– 742 °С. Приведенные геохимические особенности ядер циркона с осцилляторной зональностью, графики распределения РЗ \ni (рис. 15) и температура кристаллизации циркона указывают на то, что это циркон из магматических пород [17, 19, 23].

Черная в КЛ оболочка в точке измерения 4.2 показала конкордантный возраст 1897 ± 25 млн лет. В отличие от ядер в ней выше содержание (мкг/г) Th 78,8; U 1696; Hf 10 491; ΣРЗЭ 670, ниже содержание Y 236, отношения Th/U 0,05; Eu/Eu* 5,52; Ce/Ce* 1,42; (Sm/La)_N 0,76; (Lu/Gd)_N 8,08. Судя по микроэлементному составу (рис. 15), циркон формировался в расплаве с высоким содержанием флюида. Температура кристаллизации этого циркона (T_п^{Zir}) [29] наиболее высокая и составляет 823 °С. Вероятный возраст протолита пород 2024 ± ± 20 млн лет, более древний циркон ксеногенный.

Рис. 14. КЛ изображения и возраст циркона из гранатсодержащих кварц-амфиболовых кристаллосланцев (пр. 500)

Рис. 15. Графики распределения РЗЭ в цирконе с минимальным возрастом из кварц-амфиболовых кристаллосланцев (пр. 500) и оптические изображения зерен цирконов с точками измерений, их номерами и возрастами. Оптические изображения циркона с номерами точек измерений соответствуют КЛ изображениям на рис. 14

Породы претерпели анатексис с возрастом 1897 \pm \pm 25 млн лет.

В гранитогнейсах (пр. 500-А) циркон высокоурановый (U_{cp} 4751 до 16 464, Th_{cp} 227 мкг/г, Th/U_{cp} 0,06), в чем сходен с цирконом ультраметагенных оболочек в контактирующих с гранитогнейсами гранатсодержащих кварц-амфиболовых кристаллосланцах. Линия дискордии, построенная по пяти измерениям циркона в гранитогнейсах, дает верхнее пересечение 1899 ± 14 млн лет (рис. 16), которое в пределах аналитической погрешности перекрывается с возрастом ультраметагенного циркона 1897 ± 25 млн лет в контактирующих гранатсодержащих кристаллосланцах.

Маганский комплекс. В аляскитовых гранитах (пр. 162) циркон призматический с почти черным неоднородным внутренним строением и грубой концентрической, иногда нарушенной зональностью. Наиболее древнее значение возраста 2905 \pm 37 млн лет, полученное по пирамидальному наросту на самом крупном зерне (6.1 на рис. 17), характеризуется повышенными содержаниями Th 241, U 1197 мкг/г, Th/U 0,21. Для кластера из трех измерений в краевых частях зерен (2.1, 7.1, 10.1) получено конкордантное значение возраста 1818 \pm 27 млн лет (Th 193–784, U 705–1126 мкг/г,

Рис. 16. КЛ изображения и возраст циркона из гранитогнейсов (пр. 500-А)

Рис. 17. КЛ изображения и возраст циркона из аляскитовых гранитов маганского комплекса (пр. 162)

Рис. 18. КЛ изображения и возраст циркона из окварцованных гранитов монхолинского комплекса (пр. 159)

Th/U 0,18–1,03) с низкой величиной СКВО 0,037. Линия дискордии, построенная по девяти измерениям, дает близкое к этому возрасту верхнее пересечение 1792 \pm 50 млн лет, но численное значение погрешности возраста не улучшается. Возраст 1818 \pm 27 млн лет принимается в качестве времени формирования аляскитовых гранитов. Зерно с возрастом 2905 \pm 37 млн лет интерпретируется как ксеногенное, унаследованное из протолита.

Монхолинский комплекс. В окварцованных двуслюдяных гранитах (пр. 159) циркон представлен крупными до 600 × 250 мкм призматическими зернами (Ку 2-3,5). В КЛ преимущественно с однородным и грубым концентрически-зональным внутренним строением, иногда с мелкими ядрами, сложенными белым (гранулитовым) цирконом (рис. 18). На некоторых зернах присутствует тонкая черная кайма. Для значений, полученных в средних частях кристаллов, характерны устойчиво выдержанные высокие содержания тория, Th_{ср} 204, U_{ср} 1342 мкг/г, Th/U_{ср} 0,16 при низкой величине дискордантности 0-2%. Конкордантный возраст по 10 измерениям 1855 ± 8 млн лет, но имеет большое СКВО конкордантности 3,5 (рис. 18), указывающее на потери радиогенного свинца. Линия дискордии, построенная по этим же измерениям, дает верхнее пересечение $1858 \pm 6,2$ млн лет и принимается в качестве возраста формирования гранитов монхолинского комплекса.

Изотопный состав Nd и Sr. Большинство изученных пород характеризуется отрицательными (коровыми) значениями $\varepsilon_{Nd}(T)$ и формировалось за счет переработки архейской коры (таблица, рис. 19, *a*). Только для пироксенитов можно предполагать участие мантии в их формировании. Пироксениты характеризуются мантийной величиной $\varepsilon_{Nd}(T_{2010})$ +2,5, но повышенным значением ¹⁴⁷Sm/¹⁴⁴Nd 0,1734, свидетельствующим о нарушенности этой изотопной системы, и низким содержанием радиогенного стронция $\varepsilon_{Sr}(T_{2010})$ 2,9.

Монцодиориты Усть-Монхолинскиго массива с отрицательным (коровым) отношением $\varepsilon_{Nd}(T_{2700})$ -2,3 находятся вблизи мантийной последовательности пород и немного обогащены радиогенным стронцием $\varepsilon_{Sr}(T_{2700})$ 13,4. Модельный возраст протолита монцодиоритов архейский (3,19 млрд лет).

Гранат-амфиболовые кристаллосланцы (пр. 500) характеризуются коровой величиной $\varepsilon_{Nd}(T_{2020}) - 3,2$ и значительной обогащенностью радиогенным стронцием $\varepsilon_{Sr}(T_{2020})$ 96,1. Модельный возраст протолита этих пород позднеархейский 2,74 млрд лет.

Изотопный состав Nd и Sr в породах КМ СФпЗ

Номер пробы	Возраст, млн лет	Sm, г/т	Nd, Γ/τ	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	$\epsilon_{\rm Nd}(T)$	T(Nd) _{DM} , млрд лет	Rb, г/т	Sr, Γ/τ	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$\epsilon_{\text{Sr}}(T)$
150	1960	0,72	3,8	0,1153	0,511177	-8,1	3,04	8,2	403	0,0589	0,705795	27,6
159	1860	5,78	39,9	0,0876	0,510873	-8,4	2,74	113,3	55	6,0320	0,879697	228,6
161	2700	5,49	29,4	0,1128	0,511027	-2,3	3,19	61,1	599	0,2951	0,713776	13,4
162	1820	7,53	57,0	0,0798	0,510816	-8,3	2,65	142,9	335	1,2380	0,738532	53,8
164	2010	2,08	7,3	0,1734	0,512457	2,5		2,1	100	0,0621	0,702400	2,9
500	2020	4,35	22,1	0,1190	0,511440	-3,2	2,74	2,84	14,8	0,5550	0,725017	96,1

Примечание. Номера проб в таблице соответствуют номерам проб на рис. 1 и 19.

Рис. 19. Диаграммы ε_{Nd} (T) – возраст (*a*) и ε_{Nd} (T) – ε_{Sr} (T) (*б*) для пород КМ СФпЗ Резервуары MORB, FOZO/PREMA и MANTLE ARRAY приведены в соответствии с их современными изотопными параметрами, по [30]. При расчете первичных изотопных отношений и величин ε_{Nd} (T) и ε_{Sr} (T) для CHUR применялись ¹⁴³Nd/¹⁴⁴Nd = 0,512638; ¹⁴⁷Sm/¹⁴⁴Nd = 0,1967, для UR ⁸⁷Sr/⁸⁶Sr = 0,7045; ⁸⁷Rb/⁸⁶Sr = 0,0827. *1* – пироксениты, *2* – анортозиты, *3* – монцодиориты Усть-Монхолинского массива, *4* – гранитоиды маганского (162) и монхолинского (159) комплексов, *5* – гранатсодержащие кварц-амфиболовые кристаллосланцы

Анортозиты и гранитоиды имеют сходные величины $\varepsilon_{Nd}(T)$ от – 8,1 до – 8,4, свидетельствующие об их коровом происхождении. Анортозиты характеризуются высоким содержанием радиогенного стронция ε_{sr}(T₁₉₆₀) 27,6 и модельным возрастом протолита 3,04 млрд лет, что подтверждает участие в магмообразовании пород архейской коры. Граниты маганского комплекса (пр. 162) имеют изотопные характеристики, близкие к анортозитовым, но более обогащены радиогенным стронцием ($\epsilon_{sr}(T_{1820})$) 53,8) и отличаются более молодым модельным возрастом протолита 2,65 млрд лет. Для двуслюдяных гранитов монхолинского комплекса (пр. 159) с модельным возрастом протолита 2,74 млрд лет характерно наиболее высокое содержание радиогенного стронция (ε_{sr}(T₁₈₆₀) 228,6) при низких значениях $\varepsilon_{Nd}(T_{1860}) - 8, 4.$

Обсуждение результатов. Позднеархейские монцодиориты Усть-Монхолинского массива с возрастом около 2700 млн лет близки по времени формирования к раннему этапу гранулитового метаморфизма и анатексиса, проявленному в далдынской серии [4]. Они обладают геохимическими особенностями низкотитанистых санукитоидов [5], модель формирования которых подразумевает взаимодействие тоналит-трондьемит-гранодиоритовых расплавов и мантийных перидотитов [25]. Архейские санукитоиды рассматриваются как сигнал формирования первой субконтинентальной литосферной мантии [22]. Появление санукитоидов связывают с плавлением обогащенной субконтинентальной литосферной мантии в условиях позднеколлизионного и постколлизонного магматизма, вызванного отрывом слэба [22]. Геохимически сходные с Усть-Монхолинским массивом высоко-Ва-Sr гранитоиды присутствуют и в Билляхском петротипическом массиве, но их возраст по циркону 1983 ± 10 [8] и 1983 ± 3 – 1971 ± 4 млн лет [12]. В КМ СФп3 близкий возраст 1963 \pm 16 млн лет имеют гранитогнейсы котуйкан-монхолинского комплекса, но по геохимическим характеристикам они несопоставимы с петротипом билляхского комплекса.

Датировки по кварц-амфиболовым кристаллосланцам, гранитогнейсам и бластокатаклазитам гранитного состава дают основание предполагать для котуйкан-монхолинского мигматит-гнейсового комплекса интервал его формирования от 1963 ± 16 до 1897 ± 25 млн лет. Протолит кристаллосланцев содержит разновозрастный детритовый циркон, на основании которого верхний предел его формирования ограничивается возрастом 2024 ± 20 млн лет. В то же время кристаллосланцы, видимо, являются реститом субстрата при выплавлении из него анатектического расплава в процессе ультраметаморфизма котуйкан-монхолинского комплекса. Подтверждением этому служит близкий возраст высокоуранового циркона 1899 \pm 14 млн лет в гранитогнейсах и 1897 \pm 25 млн лет в контактирующих с ними кристаллосланцах. Возможно, что с гидротермально-метасоматическим процессом этого возраста связан один из этапов формирования урановой минерализации в КМ СФпЗ [8].

Пироксениты в КМ СФпЗ содержат преобладающий метаморфогенный циркон. Нарушенность Sm-Nd изотопной системы (¹⁴⁷Sm/¹⁴⁴Nd 0,1734) не позволяет определять возраст их протолита, поэтому принадлежность пироксенитов к перидотит-пироксенитовому далдынскому комплексу архейского возраста пока принимается условно.

Анортозиты КМ СФп3 по изотопным характеристикам близки к вмещающим гранулитам. По экспериментальным данным, основные гранулиты могут быть приняты в качестве источника родоначальных магм для протерозойских анортозитов КМ СФпЗ при условии их полного переплавления [15]. Анортозиты и габбро-анортозиты внедрялись в уже рассланцованные породы, согласно [6] «зафиксированы контакты массивного габбро-анортозита с милонитизированным слоистым биотитовым гнейсом». Высокие отношения (La/Yb)_N 11,27-17,42 и Sr/Y 166-308 свидетельствуют о гранатсодержащем рестите в магматическом источнике при экстракции анортозитового расплава в условиях гранулитового метаморфизма. В анортозитах обнаруживается ультраметагенный циркон двух возрастных диапазонов – 1959 ± 9 и 1862 ± 25 млн лет. Видимо, последняя дата и есть время выплавления анортозитов из гранулитов нижней коры, от которых они наследуют коровые характеристики изотопного состава неодима $\varepsilon_{Nd}(T)$ от -6,1 до -2,6, обогащенность радиогенным стронцием и модельный возраст протолита около 3 млрд лет. Наиболее поздний ультраметагенный циркон в анортозитах по времени образования 1858 ± 6 млн лет близок к циркону гранитов маганского и монхолинского комплексов $(1858 \pm 6 \text{ и } 1818 \pm 27 \text{ млн лет})$. Близкое положение к гранитоидам маганского комплекса анортозиты занимают на диаграмме $\epsilon_{Nd}(T){-}\epsilon_{Sr}(T)$ (рис. 19). Возможно, что и анортозиты, и гранитоиды формировались в поздне- и посттектонической обстановке, как это установлено для протерозойских анортозитов гор Адирондак в Северной Америке [18, 24].

Полученный нами для мусковитсодержащих аляскитовых гранитов маганского комплекса конкордантный возраст 1818 ± 27 млн лет в пределах погрешности измерений перекрывается с результатом 1843 ± 12 млн лет, полученным U-Pb методом по навеске циркона из гранитов аляскитового типа в Маганском блоке [13]. При этом наблюдается возрастное перекрытие вышеуказанных определений с датировкой 1858 ± 6 млн лет окварцованных мусковитсодержащих гранитов монхолинского комплекса. Возможно, все граниты возрастного диапазона $1858 \pm 6 - 1818 \pm 27$ млн лет следует относить к монхолинскому комплексу.

Изученные породы КМ СФп3 формировались либо за счет протолита с Nd-модельным возрастом 3,2–3 млрд лет (анортозиты, санукитоиды), либо с возрастом 2,74–2,65 млрд лет (амфиболовые кристаллосланцы, гранитоиды маганского и монхо-

линского комплексов). Гранитоиды с модельным протерозойским возрастом протолита в КМ СФпЗ нами и А. В. Молчановым [8] не установлены. Тем не менее, наличие магматического циркона с возрастом 2024 ± 20 млн лет в кристаллосланцах свидетельствует о возможности проявления в КМ СФпЗ до начала формирования котуйкан-монхолинского мигматит-гнейсового комплекса (1963 ± 16 млн лет) протерозойского магматизма.

Авторы выражают глубокую признательность М. С Мащаку, конструктивные замечания которого способствовали улучшению данной работы, Е. Н. Лепехиной, С. Л. Преснякову и Н.В. Родионову, выполнивших U-Pb датирование цирконов, С. Г. Симакину и Е.В. Потапову за помощь в исследовании цирконов, Е. С. Богомолову, выполнившему изучение Rb-Sr и Sm-Nd изотопных систем.

1. Архей Анабарского щита и проблемы ранней эволюции Земли. – М.: Наука, 1988. – 253 с.

2. Вишневский А.Н. Метаморфические комплексы Анабарского кристаллического щита. – Л.: Недра, 1978. – 213 с.

3. Геологическая карта СССР масштаба 1 : 200 000. Листы R-49-XIX, XX. – М., 1985.

4. *Гусев Н.И, Руденко В.Е., Бережная Н.Г.* и др. Возраст гранулитов далдынской серии Анабарского щита // Регион. геол. и металлогения. 2012. № 52. – С. 29–38.

5. *Гусев Н.И., Ларионов А.Н.* Неоархейские санукитоиды Анабарского щита // Современные проблемы геохимии. – Иркутск: Изд-во Ин-та географии им. В.Б. Сочавы СО РАН, 2012. Т. 2. – С. 51–55.

6. Лути Б.Г., Эринчек Ю.М. Геологическое строение Котуйкан-Монхоольской зоны глубинного разлома на Анабарском щите // Геология и золотоносность докембрия Якутии: Материалы по геол. и полезным ископаемым Якутской АССР. Вып. 19. – Якутск, 1971. – С. 101–109.

7. Лутц Б.Г., Оксман В.С. Глубокоэродированные зоны разломов Анабарского щита. – М.: Наука, 1990. – 260 с.

8. Молчанов А.В., Князев В.Ю., Худолей А.К. Тектонофлюидитные зоны Анабарского щита и их рудоносность //

Регион. геология и металлогения. 2011. № 47. – С. 96–106. 9. *Рачков В.С.* Зоны глубинных разломов // Архей Анабарского щита и проблемы ранней эволюции Земли. – М.: Наука, 1988. – С. 146–176.

10. Розен О.М., Журавлев Д.З., Суханов М.К. и др. Изотопно-геохимические и возрастные характеристики раннепротерозойских террейнов, коллизионных зон и связанных с ними анортозитов на северо-востоке Сибирского кратона // Геология и геофизика. 2000. Т. 41. № 32. – С. 163–180.

11. *Смелов А.П., Березкин В.И., Зедгенизов А.Н.* и др. Новые данные о составе и рудоносности Котуйканской зоны тектонического меланжа // Отечеств. геология. 2002. № 4. – С. 45–49.

12. Смелов А.П., Котов А.Б., Сальникова Е.Б. и др. Возраст и продолжительность формирования Биллях-ской зоны тектонического меланжа, Анабарский щит // Петрология. 2012. Т. 20. № 3. – С. 315–330.

13. *Степанюк Л.М.* Уран-свинцовый возраст микроклиновых гранитов Анабарского щита // Докл. АН УССР. 1991. № 10. — С. 127—129.

14. Суханов М.К., Спиридонов В.Г., Карпенко С.Ф. Первые результаты датирования анортозитов Анабарского щита Sm-Nd изохронным методом // ДАН СССР. 1990. Т. 310. № 2. – С. 448–453.

15. Суханов М.К., Розен О.М., Журавлев Д.З. Изотопный парадокс докембрийских анортозитов на примере котуйканского комплекса Анабарского щита // Изотопное датирование геологических процессов: новые методы и результаты. – М.: ГЕОС, 2000. – С. 359–361.

16. *Турченко С.И., Розен О.М.* Минерагения и тектоника раннего докембрия Анабарского щита // Отечеств. геология. 2012. № 3. – С. 8–16.

17. Федотова А.А., Бибикова Е.В., Симакин С.Г. Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях // Геохимия. 2008. № 9. – С. 980–997.

18. Ashwal L.D. The temporality of anorthosites // Canad. Mineralogist. 2010. Vol. 48. – P. 711–728.

19. Belousova E.A., Griffin W.L., O'Reilly S.Y. et al. Igneous zircon: trace element composition as an indicator of source rock type // Contrib. Mineral. Petrol. 2002. Vol. 143. – P. 602–622.

20. Debon F., Le Fort P. A chemical-mineralogical classification of common plutonic rocks and associations // Transact. of the Royal Soc. of Edinburgh. 1983. Vol. 73. N 3. - P. 135-149.

21. De la Roche H., Leterrier J., Grandclaude P. et al. A classification of volcanic and plutonic rocks using $R_1 R_2$ -diagram and major element analysis – its relationships with current nomenclature // Chem. Geol. 1980. Vol. 29. N 1–4. – P. 183–210.

22. *Fouler M., Rollinson H.* Phanerozoic sanukitoids from Caledonian Scotland: implications for Archean subduction // Geology. 2012. Vol. 40. N 12. – P. 1079–1082.

23. *Hoskin P.W.O.* Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia // Geochim. Cosmochim. Acta. 2005. Vol. 1. 69. N 3. – P. 637–648.

24. *McLelland J.M., Selleck B.W., Hamilton M.A.* et al. Late- to post-tectonic setting of some major Proterozoic anorthosite – mangerite – charnockite – granite (AMCG) suites // Can. Mineral. 2010. Vol. 48. – P. 729–750.

25. *Martin H., Moyen J.-F., Rapp R.* Sanukitoids and the Archaean-Proterozoic boundary // Transact. of the Royal Soc. of Edinburgh. 2009. Vol. 100. – P. 15–33.

26. Pelleter E., Cheilletz A., Gasquet D. et al. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit – Morocco) // Chem Geol. 2007. Vol. 245. N 3–4. – P. 135–161.

27. Rosen O.M., Rachkov V.S., Sonyushkin V.E. Metasomatism and partial melting of tectonites and origin granites in shear-belts of the Anabar Shield (North Siberia) // Geologica Carpatica. 1990. Vol. 41. N 6. – P. 693–708.

28. *Sun S., McDonough W.F.* Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc. Spec. Publ. 1989. N 42. – P. 313–345.

29. *Watson E., Harrison T.* Zircon thermometer reveals minimum melting conditions on earliest Earth // Sci. 2005. Vol. 308. – P. 841–844.

30. *Zindler A., Hart S.R.* Chemical geodynamics // Ann. Rev. Earth and Planet. Sci. 1986. Vol. 14. – P. 493–571.

Гусев Николай Иванович – зав. отделом, ВСЕГЕИ. <nikolay_gusev@vsegei.ru>.

Руденко Вячеслав Ефимович – канд. геол.-минер. наук, вед. науч. сотрудник, ВСЕГЕИ. <vjacheslav_rudenko@vsegei.ru>. Бережная Наталья Георгиевна – канд. геол.-минер. наук, ст. науч. сотрудник, ВСЕГЕИ. <natalia_berezhnaya@vsegei.ru>.

Скублов Сергей Геннадьевич – доктор геол.-минер. наук, уч. секретарь, ИГГД РАН. <skublov@yandex.ru>.

Ларионов Александр Николаевич – канд. геол.-минер. наук, ст. науч. сотрудник, ВСЕГЕИ. <alexander_larionov@vsegei.ru>.